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Abstract

Due to the wide variety of types and capabilities of variable stiffness devices, selecting a variable stiffness
device for vibration control of a structure can be difficult. A method for selecting and understanding the
performance of variable stiffness devices was developed. First, a parameter for roughly comparing variable
stiffness devices was identified using the literature. Next, variable stiffness devices in the literature were
summarized and compared by their ability to change stiffness. A single-degree-of-freedom variable stiffness
vibration suppression problem was solved in an exact implicit form using the variable stiffness comparison
parameter. The exact solution was used to create an approximate solution directly linking past variable
stiffness approximations to the exact solution in a systematic way. The result is an engineering design tool
that can be used in the design of structures with variable stiffness devices.
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1. Introduction

Variable stiffness concepts have been widely studied in the literature and extensively reviewed
for a variety of vibration control applications [1,2]. Numerous control laws have been proposed,
such as discontinuous ‘‘bang-bang’’ control [3–5] and continuous control [4,6]. Additionally, a
bewildering number of variable stiffness devices have been tested in the last decade.
Choosing a variable stiffness device for use in a structure requires some method of comparing

the performance of various systems. This implies choosing a performance metric and then linking
the metric to performance of a system. Achieving this goal can be quite difficult since real variable
stiffness devices are nonlinear, differ significantly from each other, and are often controlled with
nonlinear control laws.
This article makes several contributions. First, it briefly summarizes various variable stiffness

devices and compares their ability to change stiffness by reviewing the literature. Second, it
provides a rough comparison of the performance of different variable stiffness devices using a
simple single-degree-of-freedom (sdof) model solved both exactly and approximately. A simple
heuristic on–off control law commonly discussed in the literature is used. Third, it confirms past
results in the literature by directly linking them to the exact solution. Finally, it provides an
engineering tool for use in designing systems with variable stiffness devices.
2. Variable stiffness devices

Over the last decade, variable stiffness devices have been created using smart materials or
through mechanical means. Recent work has focused on using smart materials. In a survey of the
literature, variable stiffness devices were typically constructed from shape memory alloys (SMAs),
piezoelectrics, and magnetorheological elastomers.
When reported, researchers often document the maximum and minimum natural frequencies

achieved by the devices they studied, or they report the maximum and minimum stiffness of their
device. Since actuating these devices does not change the mass of the system, the change in natural
frequency, neglecting damping, can be used to calculate a device characterization parameter a:
That is,

a ¼
on
min

on
max

� �2
; (1)

where on
max is the highest frequency attained by a device in a system and o

n
min is the lowest frequency

attained. Alternatively, many researchers document the minimum and maximum stiffness values,
denoted as kn

0 and kn

1; respectively. A second parameter e is then defined as the ratio

e ¼
kn

1 � kn

0

kn

1 þ kn

0

: (2)

The relation between these two parameters is easily seen as

e ¼
1� a
1þ a

(3)
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and thus

a ¼
kn

0

kn

1

: (4)

Note that 0peo1 and 0oap1: The parameter e is a physical measure of the maximum variation of
a variable stiffness device, while a is the variable stiffness ratio of a device.
As will be shown, a wide range of variable stiffness devices are available to the designer and

thus a design tool for determining the achievable performance for each device is desired. In
quantifying achievable performance, it will be assumed that these devices have the ability to
respond quickly enough to be usable in real physical systems. The sections that follow briefly
summarize how selected variable stiffness devices work and identify relevant data used to
calculate a:

2.1. Shape memory alloys

SMAs are metal alloys that recover otherwise permanent strains when heated. SMAs have two
properties which have been exploited for use in vibration control called the shape memory effect
(SME) and the pseudoelasticity effect (PE). The SME occurs when a SMA in martensitic form is
deformed by a load and then heated to austenitic form where it recovers its original shape. The PE
occurs when a load is applied to an SMA in austenitic form, which under proper conditions can
induce a phase change to martensitic form. When the load is released, the material is transformed
back to austenitic form and recovers its original shape [7].
The PE has been studied as a replacement for softening springs in an isolator to decouple

displacement and resonant frequency of the system [8,9]. While this is a variable stiffness concept,
the control method typically employed is not simple on–off control as considered herein and thus
PE devices are not further discussed.
The SME has been used to create isolators with fast response rates [10]. It has also been used to

create tunable vibration absorbers. In one article, Williams et al. used three SMAs and steel wires
configured as cantilever beams with a concentrated mass at the end to create a vibration absorber.
The reported change in natural frequency was omin=omax ¼ 1

1:73 ; resulting in a ¼ 0:33 [11].

2.2. Magnetorheological elastomers

Magnetorheological elastomers (MREs) are solid polymers with dispersed polarizable particles.
Application of a magnetic field to the MRE causes a change in stiffness. The elastomer is cured in
a magnetic field, causing the magnetic particles to align in chains and remain aligned after the
magnetic field is removed [12,13].
Zhou experimented with an MRE in a sdof system. He studied a device made of silicone rubber

and containing 27% carbonyl iron particles. He experimentally determined the change in natural
frequency and fitted his data to a polynomial. Zhou found he could vary the natural frequency of
his system from 1397.6 to 1773.5 radians/s or a ¼ 0:62 [14].
In another experiment, Albanese and Cunefare tested silicone mixed with several different

percentages of iron particle concentrations. They concluded that at 35% iron content, as much as
a 400% change in frequency could be made by applying a magnetic field. In their conference
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briefing, they concluded 30% iron content could cause a nearly 900% change in frequency. Their
results are reported in terms of a�1=2 or, equivalently, they tested several devices in the range
0:11pap0:91 [15,16].

2.3. Piezoelectrics

Stiffness of piezoelectrics can be varied by connecting them to a capacitive shunt circuit. This
and other methods of shunting piezoelectrics for vibration control were reviewed by Lesieutre
[17]. A simple method of varying the stiffness of piezoelectric devices is to switch it between open
and closed circuit conditions. This has the effect of changing the electrical capacitance of the
piezoelectric device and varies the stiffness between its highest and lowest stiffness values. Richard
et al. experimented with this method and found superior performance as compared to a resistively
shunted nonswitching system [18].
Corr and Clark have also experimented with this concept. For their setup, they concluded this

method provided only small changes in stiffness and was not as effective as other shunt circuits
with associated control laws. Other shunt circuits experimented with include pure resistor and
resistor/inductor shunt circuits [19,20].
In an earlier paper, Clark analyzed effective beam stiffness in the case of a piezoelectric bonded

to a cantilever. As the ratio of beam to piezoelectric patch thickness decreased, the open circuit to
short circuit stiffness ratio or a�1 was found to increase to a maximum value approaching 2.0.
That is, a ! 1

2
[21].

Varying stiffness has been used to tune vibration absorbers when the resonant frequency varies.
Davis and Lesieutre created and demonstrated a tunable vibration absorber that tracked a
disturbance frequency. The piezoelectric stiffness element was actively tuned using a shunt circuit
ladder of capacitors allowing various discrete levels of capacitance to be chosen. Davis and
Lesieutre were able to vary the natural frequency of their system by almost 7.5% over a range of
313–338Hz [22]. This translates to an a of 0:86:
More recently, Ramaratnam et al. proposed using piezoelectrics for robotic applications. They

simulated both open and closed switching and the use of capacitive shunt circuits to minimize the
tip deflection of a translational flexible beam. Both methods achieved similar results. The
capacitive shunt method allowed a more gradual change in stiffness than the open/closed
switching method. Their predicted equivalent stiffness for the capacitive method translates to an a
of approximately 0.045. Future experimental work is planned [23].

2.4. Other devices

Other methods of varying stiffness have been explored. One approach is to place a
magnetorheological fluid (MRF) damper in series with a spring, which is then placed in parallel
with another spring, creating a three-parameter isolator. Varying the MRF damping then changes
the apparent stiffness of the isolator [24,25].
Two mechanical concepts for varying stiffness have been discussed in the literature. One

concept is a vibration absorber that consists of a mass attached to a helical spring with a spring
collar dividing the spring into two parts. The spring collar isolates part of the spring from the rest
of the absorber and the number of coils used in the absorber can be changed by rotating the spring
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[26]. Another concept is to connect two leaf springs in opposition to each other and use a stepper
motor to increase the separation distance between the two springs. In this concept, the authors
report a change of stiffness of a�1 ¼ 62 in a nonlinear range and a�1 ¼ 45 in an approximately
linear range. The linear range where a ¼ 1

45
¼ 0:02 corresponds to a value for e very close to its

largest possible value [27].

2.5. Summary

Table 1 summarizes the results of these calculations for some proposed hardware values for e
and a found in the literature in order of reported ability to change stiffness from highest to lowest.
These devices offer a wide range of choices for the control system designer, with a potential wide
range of achievable performance. An analytical design tool is needed to help quantify the
performance results from a particular hardware choice. In the following sections, an analytical
solution of a well-known simplified model is obtained, and then used in the development of
quantifiable design guides.
3. Variable stiffness model

A general sdof suppression problem has been considered by Leitmann [3] as

mn €xn
þ cnðvÞ _xn þ kn

ðuÞxn ¼ Qn: (5)

The function Qn ¼ QnðtnÞ is the disturbance to the system. The ‘‘n’’ notation identifies the variable
as a dimensional variable. Variables without the ‘‘n’’ notation are nondimensional variables. The
parameters v 2 ½�1; 1	 and u 2 ½�1; 1	 are control parameters that instantaneously change the
stiffness and damping of the system. The stiffness kn

ðuÞ is defined as

kn
ðuÞ ¼ 1

2
½ðkn

0 þ kn

1Þ þ ðkn

1 � kn

0Þu	; (6)
Table 1

Parameter values for proposed variable stiffness devices in the literature

Source Year Device a e

Albanese and Cuefare [16] 2003 MRE 30% Fe 0.01 0.98

Walsh and Lamancusa [27] 1992 Leaf Spring 0.02 0.96

Albanese and Cuefare [15,16] 2003 MRE 35% Fe 0.05 0.91

Albanese and Cuefare [15,16] 2003 MRE 25% Fe 0.11 0.80

Albanese and Cuefare [15,16] 2003 MRE 40% Fe 0.19 0.68

Albanese and Cuefare [15,16] 2003 MRE 10% Fe 0.31 0.53

Williams, Chiu, and Bernhard [11] 2002 SMA 0.33 0.50

Albanese and Cuefare [15,16] 2003 MRE 50% Fe 0.35 0.49

Clark [21] 2000 Piezoelectric Patch on Cantilever (On-Off) 0.50 0.33

Zhou [14] 2003 MRE 27% Fe 0.62 0.23

Albanese and Cuefare [15,16] 2003 MRE 0%Fe 0.83 0.10

Ramaratnam, Jalili, and Grier [23] 2003 Piezoelectric (Capactive Shunt) 0.91 0.05

Davis and Lesieutre [22] 2000 Piezoelectric (Capactive Shunt) 0.93 0.04
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where kn

1 and kn

0 are both positive and are the maximum and minimum stiffness achievable for the
device, respectively. The damping function cnðvÞ is defined in a similar manner as Eq. (6).
Leitmann [3] develops a variable stiffness control law using an energy argument as

u ¼ sgnðxn _xnÞ ¼

1 if xn _xn40;

0 if xn _xn ¼ 0;

�1 if xn _xno0;

8><
>: (7)

where sgn represents the sign or signum function. Leitmann concludes variable damping should
always be maximum in the sdof suppression problem, so variable damping is not considered
herein [3]. In the current effort, damping is assumed to be negligible (i.e. cn ¼ 0). Various versions
of Eq. (5) have been considered by other authors [4,5]. For example, Douay and Hagood [4]
considered the equivalent system

mn €xn þ ðkn
þ ~k

n
uÞxn ¼ 0: (8)

With the change of variables

~k
n
¼

kn

1 � kn

0

2
; (9)

kn
¼

kn

1 þ kn

0

2
; (10)

and

Qn ¼ 0; (11)

Eqs. (5) and (8) are equivalent. The definitions of ~k
n
and kn will be carried through into the results

to simplify comparisons with the literature.
4. Problem statement in non-dimensional form

Of interest to the control designer is how performance is affected by choice of the variable
stiffness hardware. For the undamped case, combining Eqs. (5) and (6) results in

mn €xn þ 1
2
½ðkn

1 þ kn

0Þ þ ðkn

1 � kn

0Þ sgnðx
n _xnÞ	xn ¼ 0; (12)

with two sets of initial conditions. The first set is

xnð0Þ ¼ xn

0; _xnð0Þ ¼ 0 (13)

and the second set is

xnð0Þ ¼ 0; _xnð0Þ ¼ _xn

0: (14)

Eq. (12) can be nondimensionalized by defining the nominal natural frequency as

on

0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

0 þ kn

1

2mn

s
; (15)
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and by defining a reference length, such that the nonzero initial condition will become unity. For
the initial displacement problem defined by Eq. (13), use

Ln ¼ xn

0 : (16)

For the nonzero initial velocity, corresponding to Eq. (14), use

Ln ¼
_xn
0

on
0

: (17)

For both cases, time can be scaled to be

t ¼ tnon

0 (18)

and displacement can be scaled to be

x ¼
xn

Ln
: (19)

Note that Ln cannot equal zero since Eq. (19) becomes invalid. However, Ln ¼ 0 implies no initial
disturbance to the system, resulting in the trivial solution. In nondimensional form, Eq. (12) can
then be rewritten as

€x þ x þ e sgnðx _xÞx ¼ 0; (20)

with e and a as previously defined,

e ¼
kn

1 � kn

0

kn

1 þ kn

0

¼
1� a
1þ a

¼
~k
n

kn
(21)

or in terms of a yields

a ¼
kn

0

kn

1

¼
1� e
1þ e

¼
kn

� ~k
n

kn
þ ~k

n
: (22)

It will be shown that e or a are convenient variables for comparing the performance capabilities of
variable stiffness devices.
5. Results

To solve Eq. (12), an implicit solution technique was developed using a perturbation technique
on the piecewise linear solution. The full derivation of this technique is contained in the
appendices, and only the results are presented below.

5.1. The exact solution

Appendix A contains the derivation of the exact implicit solution to Eq. (20) for the initial
conditions

xð0Þ ¼ 1; _xð0Þ ¼ 0; (23)
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while Appendix B provides an approximate explicit solution based on the exact implicit solution.
Using the initial conditions of Eq. (23), the exact solution was found to be of the form

xðtÞ ¼ aðfÞ cosðtðfÞÞ: (24)

By first defining the terms

nðfÞ ¼ floor
2f
p

� �
(25)

and

JkðeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� e½ð�1Þk þ 1	

2� e½ð�1Þk � 1	

s
; (26)

where floor ð
Þ rounds down to the nearest integer and k ¼ 0; 1; 2; . . . ; the implicit time and
amplitude are given by

tdðfÞ ¼

1ffiffiffiffiffiffi
1�e

p tan�1½ 1ffiffiffiffiffiffi
1�e

p tanðfÞ	 if 0pfp p
2
;

p
2

Pn�1
k¼0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�1Þke

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�1Þne

p tan�1ð 1
JnðeÞ

tanðf� np
2 ÞÞ otherwise

8<
: (27)

and

ad ðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�e

1�e cos2 f

q
if 0pfp p

2
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�e½ð�1Þnþ1	
2ð1�eð�1Þn cos2ðfÞÞ

q Qn�1
k¼0 JkðeÞ otherwise:

8><
>: (28)

For the initial velocity condition,

xð0Þ ¼ 0; _xð0Þ ¼ 1; (29)

Eqs. (24)–(26) still apply, but the time and amplitude is given as

tvðfÞ ¼

1ffiffiffiffiffiffi
1þe

p tan�1 1ffiffiffiffiffiffi
1þe

p tanðfÞ þ p
2

h i
if � p

2
pfp0;

p
2

Pn�1
k¼�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�1Þke

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð�1Þne

p tan�1 1
JnðeÞ

tan f� np
2

� �� �
otherwise

8><
>: (30)

and

avðfÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þe cos2f

p if � p
2
pfp0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�e½ð�1Þnþ1	
2ð1�eð�1Þn cos2ðfÞÞ

q Qn�1
k¼�1 JkðeÞ otherwise:

8><
>: (31)

The subscripts ‘d’ and ‘v’ are used above to distinguish between the initial displacement and
initial velocity solutions. The derivation for the initial velocity solution is not provided herein, but
is similar to the initial displacement solution presented in Appendix A. The solutions are in an
implicit form because f is treated as the independent variable while tðfÞ and aðfÞ are the
dependent variables. When fXp=2; Eq. (27) cannot be solved explicitly for f as it is a
transcendental equation in f: Similarly, Eq. (30) is transcendental also for fX0:
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When 0pfpp=2 or 0ptpp=2
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
; the initial displacement problem (Eqs. (24) and (23))

become

xðtÞ ¼ cos ðt
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
Þ: (32)

When �p=2pfp0 or 0ptpp=2
ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
; the initial velocity problem (Eqs. (24) and (29)) become

xðtÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p sin ðt
ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
Þ: (33)

This simply means the control law has not yet switched the variable stiffness device.
Although the solution obtained above is exact, it is not easily computable, and hence an

approximate solution is desired, where comparison can be made to the exact solution as needed.
5.2. An approximate solution

Over a long time period when tbp=2
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
or nðfÞb1; for the initial displacement problem,

the solution can be approximated (see Appendix B for detail) by

xðtÞ � e
ffiffiffiffiffiffi
1�e

p
ln að Þ=p 1þ

ffiffi
a

p
ð Þt cos

2
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p

1þ
ffiffiffi
a

p t þ yd

" #
; (34)

where yd is a phase correction term and all other parameters as previously defined. Setting Eqs.
(32) and (34) equal at t ¼ p=2

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
; which corresponds to the first stiffness switch, results in

yd ¼
p
2

ffiffiffi
a

p
� 1ffiffiffi

a
p

þ 1

� �
: (35)

This point-matching technique corrects the phase of Eq. (34), so it matches the phase of Eq. (32).
Similarly, an approximate explicit solution for the initial velocity problem can be derived, also

by considering the long-term behavior of the system. The approximate solution is

xðtÞ �

1ffiffiffiffiffiffi
1þe

p sinðt
ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
Þ if tot1;

1ffiffiffiffiffiffi
1þe

p cosðt
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
þ yvÞ if t1ptot2;

e
ffiffiffiffiffiffi
1�e

p
lnðaÞ=pð1þ

ffiffi
a

p
Þt sin 2

ffiffiffiffiffiffi
1�e

p

1þ
ffiffi
a

p t
h i

otherwise;

8>>>><
>>>>:

(36)

where t1 ¼ p=2
ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
and t2 ¼ pð1þ

ffiffiffi
a

p
Þ=2

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
are the first and second switching times for the

controller, respectively. The first two expressions of Eq. (36) are exact while the last expression is
approximate. The middle expression of Eq. (36) is making use of Eq. (32) with a phase correction.
Again, by point matching at the switching times, it can be shown that

yv ¼ �
p
2

ffiffiffi
a

p
(37)

and the last expression requires no phase correction. The rationale for point matching the middle
equation is because the first switching time occurs close to t ¼ 0; which invalidates the long term
behavior assumption.
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5.3. Time response comparisons

With both the exact and approximate solutions developed, comparisons can now be made of
the system solution (Eq. (20)) for the initial displacement problem using three approaches: (1) the
simulated solution by an adaptive Runge–Kutta method, (2) the exact implicit solution (Eq. (24)),
and (3) the explicit approximate solution (Eqs. (32), (34), and (35)). Similar comparisons can be
made for the initial velocity problem, but are omitted for brevity.
No difference was seen between the simulated solution and the exact implicit solution as

expected. The approximate explicit solution was found to be a reasonable approximation of the
exact implicit solution. Figs. 1 and 2 show the time–response plots comparing the three solutions
for two settings of e: As can be seen in Fig. 1, the approximate solution seems to match the exact
solution in terms of phase and frequency, but undershoots the exact solution. In Fig. 2, the
undershoot becomes worse for larger values of e and appears to be greatest in the first period of
the response. In later periods, the approximate solution seems closer to the exact solution. This is
consistent as the approximate solution was developed for long-time behavior of the system.
5.4. Approximate equivalent viscous damping

A technique commonly used in the literature is to relate the exact system damping to an
equivalent viscous damper. Using the results from above, a similar comparison can now be made
between the actively controlled variable stiffness device and an equivalent viscous damper system.
The second-order viscously damped system

€x þ 2zon _x þ o2nx ¼ 0 (38)
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with initial conditions xð0Þ ¼ d0 and _xð0Þ ¼ v0 has the underdamped solution:

xðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d20o

2
d þ ð _x0 þ zonx0Þ

2
q

od

e�zont cos odt � tan�1
v0 þ d0zon

d0od

� �� �
; (39)

where

od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
; (40)

z is the damping ratio, and on is the natural frequency of the system. Eqs. (34) and (39) or
Eqs. (36) and (39) can be used to estimate an equivalent viscous damping ratio and natural
frequency for the variable stiffness device, valid for the long-term behavior (i.e. tb1). The results
are

zeq ¼
j lnðaÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ lnðaÞ2

q ; (41)

oneq ¼

ffiffiffiffiffiffiffiffiffiffiffi
1� e

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2 þ lnðaÞ2

q
pð1þ

ffiffiffi
a

p
Þ

: (42)

Fig. 3 is a plot of Eqs. (41) and (42). As e ! 0; zeq ! 0 and oneq ! 1: This matches the
expected behavior of a simple linear oscillator. As e ! 1; zeq ! 1 and oneq ! 0; and the system
no longer oscillates. Equivalently, Fig. 3 could have been plotted versus a; making use of Eq. (22).
Eq. (41) can be shown to match the theoretical damping ratio Douay and Hagood [4] calculated

using an energy method by using Eqs. (9), (10), (2), and (22). Graphing the damping coefficient
zeqoneq with respect to e results in a graph that matches the damping ratio plot created by Onoda
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et al. [5]. The damping coefficient is approximately maximized when e ¼ 0:877: Referring to
Table 1 shows that MREs will potentially provide the best system response for the simple control
law used.
6. Conclusions

The literature was surveyed to understand how much stiffness variation was possible in variable
stiffness devices currently being developed. Next, a rough understanding of potential performance
of the different devices was studied using a sdof problem. While the sdof problem is well
documented in the literature, no exact solution to the problem seems to exist. Becaus e the exact
solution is in implicit form, an approximate explicit solution was derived directly from the exact
solution. The approximate solution was shown to be an excellent approximation of the exact
solution. The approximate solution was used to estimate an equivalent viscous damping ratio and
an equivalent natural frequency, which were then used to confirm previous literature results. This
work adds a new design tool to the engineer’s toolbox to aid in the selection of a variable stiffness
device to achieve a desired level of damping in a structure. Work is currently underway to extend
the result to semi-active damping devices, and alternative control switching schemes.
Appendix A. Exact solution detail

The method of variation of parameters [28] will be applied to solve Eq. (20) with initial
conditions xð0Þ ¼ 1 and _xð0Þ ¼ 0: When e ¼ 0; the solution to Eq. (20) is

x ¼ a cosðfÞ; (A.1)
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where f ¼ t þ b; both a and b are constants. Then,

_x ¼ �a sinðfÞ: (A.2)

When ea0; a and b are functions of time. Then,

_x ¼ _a cosðfÞ � að1þ _bÞ sinðfÞ ¼ �a sinðfÞ þ _a cosðfÞ � a _b sinðfÞ (A.3)

and

€x ¼ � _a sinðfÞ � að1þ _bÞ cosðfÞ ¼ � _a sinðfÞ � a cosðfÞ � a _b cosðfÞ: (A.4)

To put Eqs. (A.2) and (A.3) in the same form requires

_a cosðfÞ � a _b sinðfÞ ¼ 0 (A.5)

or

_b ¼
_a cosðfÞ
a sinðfÞ

¼ _f� 1: (A.6)

Substituting Eqs. (A.1), (A.2) and (A.4) into Eq. (20) results in

� _a sinðfÞ � a _b cosðfÞ � e sgnðsinð2fÞÞ ¼ 0: (A.7)

Substituting Eq. (A.6) into Eq. (A.7) and simplifying results in

_a

a
¼ �

e
2
j sinð2fÞj: (A.8)

Substituting Eq. (A.8) into Eq. (A.6) and simplifying results in

_f ¼ �
e
2
ð1þ cosð2fÞ sgnðsinð2fÞÞÞ � f ðfÞ: (A.9)

The initial conditions of Eqs. (A.8) and (A.9) were determined to be að0Þ ¼ 1 and fð0Þ ¼ 0 using
Eqs. (A.1) and (A.2). Eq. (A.9) can be solved implicitly as

t ¼

Z f

0

dF
f ðFÞ

(A.10)

by realizing that sgnðsinð2fÞÞ changes sign at fk ¼ kp=2 for k ¼ 0; 1; . . . : Then for n40;

t ¼
Xn�1
k¼0

Z ðkþ1Þp=2

kp=2

dF

ðð�1Þkþ1=2Þeð1þ cosð2fÞÞ þ 1
þ

Z f

np=2

dF

ðð�1Þnþ1=2Þeð1þ cosð2fÞÞ þ 1
; (A.11)

where nðfÞ ¼ floor 2f
p

� �
: For n ¼ 0; the summation in Eq. (A.11) does not appear and

t ¼

Z f

np=2

dF

ðð�1Þnþ1=2Þeð1þ cosð2fÞÞ þ 1
: (A.12)

The two integrals in Eq. (A.11) will be evaluated in turn. Applying the transformation f ¼

ðkp=2Þ þ ðn=2Þ to the first integral of Eq. (A.11) producesZ ðkþ1Þp=2

kp=2

dF

ðð�1Þkþ1=2Þeð1þ cosð2fÞÞ þ 1
¼

Z p

0

dn

2� ð�1Þke� e cosðnÞ
¼

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð�1Þke

q : (A.13)
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Applying the transformation f ¼ ðnp=2Þ þ ðn=2Þ to the second integral of Eq. (A.11) producesZ f

np=2

dF
ð�1Þnþ1

2
eð1þ cosð2fÞÞ þ 1

¼

Z 2f�np

0

dn
2� eð�1Þn � e cos n

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð�1Þne
p tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� e ð�1Þn � 1ð Þ

2� e ð�1Þn þ 1ð Þ

s
tan f�

np
2

� � !
: ðA:14Þ

Then Eqs. (A.11) and (A.12) becomes Eq. (27).
Next, Eq. (A.9) will be solved by observing that dt ¼ df=f ðfÞ and substituting into Eq. (A.9)

resulting in Z t

0

da

a
¼ �

e
2

Z f

0

j sinð2FÞjdF
f ðFÞ

: (A.15)

Recalling sgnðsinð2fÞÞ changes sign at fk ¼ kp=2 for k ¼ 0; 1; . . . ; when n40; Eq. (A.15) becomes

lnðaÞ ¼ �
e
2

Xn�1
k¼0

Z ðkþ1Þp=2

kp=2

sinð2FÞdF

� e
2 ð1þ cosð2FÞ þ ð�1ÞkÞ

�
e
2

Z f

np=2

sinð2FÞdF
� e
2 ð1þ cosð2FÞ þ ð�1ÞnÞ

: ðA:16Þ

For n ¼ 0;

lnðaÞ ¼ �
e
2

Z f

np=2

sinð2FÞdF
�ðe=2Þð1þ cosð2FÞ þ ð�1ÞnÞ

: (A.17)

Letting f ¼ ðkp=2Þ þ ðn=2Þ; the first integral of Eq. (A.16) evaluates asZ ðkþ1Þp=2

kp=2

sinð2FÞdF

� e
2
ð1þ cosð2FÞ þ ð�1ÞkÞ

¼

Z p

0

sin ndn

2� eð�1ÞK � e cos n

¼ ln
2� e½ð�1Þk � 1	

2� e½ð�1Þk þ 1	

 !1=e
: ðA:18Þ

Letting f ¼ ðnp=2Þ þ ðn=2Þ; the second integral of Eq. (A.16) evaluates asZ f

np=2

sinð2FÞdF
� e
2
ð1þ cosð2FÞ þ ð�1ÞnÞ

¼

Z 2f�np

0

sin ndn
2� eð�1Þn � e cos n

¼ ln
2� eð�1Þn½1þ cosð2fÞ	
2� e½ð�1Þn þ 1	

� �1=e
: ðA:19Þ

Then, Eq. (A.16) becomes

lnðaÞ ¼
Xn�1
k¼0

ln
2� e½ð�1Þk � 1	

2� e½ð�1Þk þ 1	

 !�1=2

þ ln
2� eð�1Þn½1þ cosð2fÞ	
2� e½ð�1Þn þ 1	

� ��1=2

(A.20)
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and Eq. (A.17) becomes

lnðaÞ ¼ ln
2� eð�1Þn½1þ cosð2fÞ	
2� e½ð�1Þn þ 1	

� ��1=2

; (A.21)

resulting in the solution shown in Eq. (28).
Appendix B. approximate explicit solution detail

For f4 p
2
; Eq. (27) can be rewritten as

tðfÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� e

p
np
4
ð1þ

ffiffiffi
a

p
Þ þ

tan�1 1ffiffiffiffiffiffi
1�e

p tanðfÞ
� �

if nðfÞ is even;

�1� a tan�1ð
ffiffiffiffiffiffiffiffiffiffiffi
1þ e

p
cotðfÞÞ if nðfÞ is odd

8<
:

2
4

3
5: (B.1)

When nðfÞb1;

tðfÞ �
np
4

ð1þ
ffiffiffi
a

p
Þffiffiffiffiffiffiffiffiffiffiffi

1� e
p : (B.2)

Approximating

nðfÞ �
2f
p

(B.3)

and solving Eq. (B.2) for fðtÞ results in

f �
2
ffiffiffiffiffiffiffiffiffiffiffi
1� e

p

1þ
ffiffiffi
a

p t: (B.4)

Next, Eq. (28) is rewritten as

aðfÞ ¼ anðfÞ=4

ffiffiffiffiffiffiffiffiffiffiffi
1� e

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e cos2 f

p 1 if nðfÞ is even;

ð1� e2Þ1=4 if nðfÞ is odd:

(
(B.5)

Again assuming nðfÞb1 and using Eqs. (B.3) and (B.4) results in

aðfÞ � anðfÞ=4 � af=2p � að2
ffiffiffiffiffiffi
1�e

p
Þ=ðpð1þ

ffiffi
a

p
ÞÞt: (B.6)

Substituting Eqs. (B.4) and (B.6) into Eq. (24) produces Eq. (34).
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